TABLE OF CONTENTS

SECTION 7

DESCRIPTION AND OPERATION OF THE AIRPLANE AND ITS SYSTEMS

Paragraph No.

1

No.		Page
7.1	The Aimlana	No.
7.3	The Airplane	7-1
7.5	Airframe	7-1
7.7	Engine and Propeller Induction System Engine Controls	7-2
7.9	Engine Controls	7-2
7.11		7-3
7.13		7-5
7.15		7-9
7.17		7-10
7.19		
7.21		7-17
7.23		7-19
7.25		7-19
7.27		7-21
7.29 7.31		7-22
7.33		7-24
7.35		7-24
7.33		7-24
7.37		7-25
7.41		7-25
/.41		7-27

I

. • . ~

SECTION 7

DESCRIPTION AND OPERATION

OF THE AIRPLANE AND ITS SYSTEMS

7.1 THE AIRPLANE

The Lance II is a single engine, low wing retractable landing gear, all metal airplane featuring the tail surfaces in a "T" configuration. It has seating for up to seven occupants and two separate one hundred pound luggage compartments.

7.3 AIRFRAME

With the exception of the steel engine mount, the landing gear, miscellaneous steel parts, the cowling, and the lightweight plastic extremities (tips of wings, tail fin and stabilator), the basic airframe is of aluminum alloy. Aerobatics are prohibited in this airplane since the structure is not designed for aerobatic loads.

The fuselage is a semi-monocoque structure. There is a front door on the right side and a rear door on the left. A cargo door is installed aft of the rear passenger door. When both rear doors are open, large pieces of cargo can be loaded through the extra-wide opening. A door on the right side of the nose section gives access to the nose baggage compartment.

The wing is of a conventional design and employs a laminar flow NACA 65_2 -415 airfoil section. The main spar is located at approximately 40% of the chord aft of the leading edge. The wings are attached to the fuselage by the insertion of the butt ends of the spar into a spar box earry-through, which is an integral part of the fuselage structure. The bolting of the spar ends into the spar box carry-through structure, which is located under the center seats, provides in effect a continuous main spar. The wings are also attached fore and aft of the main spar by an auxiliary front spar and a rear spar. The rear spar, in addition to taking torque and drag loads, provides a mount for flaps and ailerons. The four-position wing flaps are mechanically controlled by a handle located between the front seats. When fully retracted, the right flap locks into place to provide a step for cabin entry. Each wing contains two interconnected fuel tanks. Both tanks on one side are filled through a single filler neck located in the outboard tank.

A vertical stabilizer, an all-movable horizontal stabilator, and a rudder make up the empennage. The stabilator, which is mounted on top of the fin, incorporates an anti-servo tab which improves longitudinal stability and provides longitudinal trim. This tab moves in the same direction as the stabilator, but with increased travel.

ISSUED: JANUARY 18, 1978

~

7.5 ENGINE AND PROPELLER

The Lycoming IO-540-K1G5D engine installed in the PA-32RT-300 is rated at 300 horsepower at 2700 rpm. This engine has a compression ratio of 8.7 to 1 and requires 100/130 minimum octane fuel. The engine is equipped with a geared starter, a 60 ampere alternator, dual magnetos, vacuum pump drive, a diaphragm-type fuel pump, and fuel injection.

The exhaust system consists of individual exhaust pipes routed in pairs to three heavy gauge stainless steel mufflers. Exhaust gases are directed overboard at the underside of the engine cowling. The mufflers are surrounded by a shroud which provides heat for the cabin and for windshield defrosting.

The cowling is designed to cool the engine in all normal flight conditions, including protracted climb, without the use of cowl flaps or cooling flanges.

The constant speed propeller is a Hartzell HC-C2YK-1()F/F8475D-4 with a diameter of 80 inches. The propeller is controlled by a governor mounted at the left forward side of the crankcase. The governor is operated by a cable from the power control quadrant.

7.7 INDUCTION SYSTEM

An induction scoop is located on the left side of the lower cowl. An intake air box is attached to the inside of the cowl adjacent to the air filter box. The air filter box is located at the aft end of the induction scoop. Access to the filter is gained through a detachable plate located on the outside of the lower cowl.

The intake air box incorporates a manually operated two-way valve designed to allow induction air either to pass through the filter or to bypass the filter and supply heated air directly to the engine. Alternate air selection insures induction air flow should the filter become blocked. Since the air is heated, the alternate air system offers protection against induction system blockage caused by snow or freezing rain, or by the freezing of moisture accumulated in the induction air filter. Alternate air is unfiltered; therefore, it should not be used during ground operation when dust or other contaminants might enter the system. The primary (through the filter) induction source should always be used for takeoffs.

The Bendix RSA-10ED1 type fuel injection system consists of a servo regulator which meters fuel flow in proportion to airflow to the engine, giving the proper fuel-air mixture at all engine speeds, and a fuel flow divider which receives the metered fuel and accurately divides the fuel flow among the individual cylinder fuel nozzles.

A combination fuel flow indicator and manifold pressure gauge is installed in the left side of the instrument panel. The fuel flow indicator is connected to the fuel flow divider and monitors fuel pressure. The instrument converts fuel pressure to an indication of fuel flow in gallons per hour and percentage of cruise power.

REPORT: VB-890 7-2

ISSUED: JANUARY 18, 1978

7.9 ENGINE CONTROLS

Engine controls consist of a throttle control, a propeller control and a mixture control lever. These controls are located on the control quadrant on the lower center of the instrument panel (Figure 7-1) where they are accessible to both the pilot and the copilot. The controls utilize teflon-lined control cables to reduce friction and binding.

The throttle lever is used to adjust the manifold pressure. It incorporates a gear up warning horn switch which is activated during the last portion of travel of the throttle lever to the low power position. If the landing gear is not locked down, the horn will sound until the gear is down and locked or until the power setting is increased. This is a safety feature to prevent an inadvertent gear up landing.

The propeller control lever is used to adjust the propeller speed from high RPM to low RPM.

The mixture control lever is used to adjust the air to fuel ratio. The engine is shut down by the placing of the mixture control lever in the full lean position. In addition, the mixture control has a lock to prevent activation of the mixture control instead of the pitch control. For information on the leaning procedure, see the Avco-Lycoming Operator's Manual.

The friction adjustment lever on the right side of the control quadrant may be adjusted to increase or decrease the friction holding the throttle, propeller, and mixture controls or to lock the controls in a selected position.

The alternate air control is located to the right of the control quadrant. When the alternate air lever is in the up, or closed, position the engine is operating on filtered air; when the lever is in the down, or open, position the engine is operating on unfiltered, heated air. The control is operated by pressing the knob to the left to clear the retaining gate and then moved in the desired direction (refer to Figure 7-1).

ISSUED: JANUARY 18, 1978 REVISED: DECEMBER 15, 1978

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

CONTROL QUADRANT AND CONSOLE Figure 7-1

REPORT: VB-890 7-4

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1987

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

LANDING GEAR SELECTOR Figure 7-3

7.9 LANDING GEAR

The Turbo Lance II is equipped with a retractable tricycle landing gear, which is hydraulically actuated by an electrically powered reversible pump. The pump is controlled by a selector switch on the instrument panel to the left of the control quadrant (Figure 7-3). The landing gear is retracted or extended in about seven seconds.

Some aircraft also incorporate a pressure sensing device in the system which lowers the gear regardless of gear selector position, depending upon airspeed and engine power (propeller slipstream). The gear is designed to extend at airspeeds below approximately 103 KIAS with power off even if the selector is in the up position. The extension speeds will vary from approximately 81 KTS to approximately 103 KIAS depending on power settings and altitude. The device also prevents the gear from retracting at airspeeds below approximately 81 KTS with full power, though the selector switch may be in the up position. This speed increases with reduced power and/or increased altitude. Manual override of the device is provided by an emergency gear lever located between the front seats to the right of the flap handle (refer to Figure 7-9). The sensing device operation is valve and an electrical switch which actuates the pump motor. A high pressure and static air source for actuating the diaphragm is provided in a mast mounted on the left side of the fuselage above the wing. Any alleviate obstruction in icing conditions. The optional heated mast is turned on whenever the PITOT HEAT is turned on.

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1987

WARNING

Avoid ejecting objects out of the pilot storm window which could possible enter or obstruct the holes in the mast.

The emergency gear lever, when placed in the raised position, can be used to override the system, and gear position is then controlled by the selector switch regardless of airspeed/power combinations. The emergency gear lever is provided with a latching device which may be used to lock the override lever in the up position. The latch is located on the right side panel of the console below the level of the manual override lever. To lock the override lever in the up position, raise the override lever to the full up position and push the latch down. A yellow warning light located below the gear selector switch (Figure 7-3) flashes to warn the pilot that the automatic gear lowering system is disabled. The latch is spring-loaded to the off position to aid disengagement. To disengage the latch raise the override lever and release. The lever will return to its normal position and the yellow flashing light will extinguish. The lever must also be latched in the raised (up) position when gear-up stalls are practiced.

The emergency gear lever, when used for emergency extension of the gear, manually releases hydraulic pressure to permit the gear to free-fall with spring assistance on the nose gear. The lever must be held in the downward position for emergency extension.

Gear down and locked positions are indicated by three green lights located above the selector, and a red Warning Gear Unsafe light is located at the top of the panel. An all lights out condition indicates the gear is up. The landing gear should not be retracted above a speed of 106 KIAS and should not be extended above a speed of 129 KIAS.

The main landing gear uses Cleveland 6.00 x 6 wheels. The main gear incorporate brake drums and Cleveland double disc hydraulic brake assemblies. The nose wheel carries a 5.00×5 six ply tire and the main gear use 6.00×6 eight ply tires. All three tires are tube type.

Two micro-switches in the throttle quadrant activate a warning horn and red Warning Gear Unsafe light under the following conditions:

- 1. Gear up and power reduced below approximately 14 inches of manifold pressure.
- 2. On aircraft equipped with the backup gear extender, if the system has extended the landing gear and the gear selector is UP, except at full throttle.
- 3. Gear selector switch UP while on the ground.

On aircraft which are NOT equipped with the backup gear extender, an additional switch is installed which activates the warning horn and light whenever the flaps are extended beyond the approach position (10°) and the landing gear are not down and locked.

The gear warning horn emits a 90 Hz beeping sound in contrast to the stall warning horn which emits a continuous sound.

The nose gear is steerable through a 22.5 degree arc each side of center through the use of the rudder pedals. As the nose wheel retracts, the steering linkage disengages to reduce rudder pedal loads in flight. The nose wheel is equipped with a hydraulic shimmy dampener to reduce nose wheel shimmy.

The oleo struts are of the air-oil type, with normal extension being 2.60 inches for the nose gear and 4.0 inches for the main gear under normal static load (empty weight of airplane plus full fuel and oil).

The standard brake system includes toe brakes on the left and right set of rudder pedals aand a hand brake located below and near the center of the instrument panel. The toe brakes and the hand brake have individual brake cylinders, but all cylinders use a common reservoir. The parking braake is incorporated in the lever brake and is operated by pulling back on the lever and depressing the knob attached to the top of the handle. To release the parking brake, pull back on the brake lever; then allow the handle to swing forward.

REPORT: VB-890 7-6

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1987

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

SECTION 7 DESCRIPTION AND OPERATION

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1987

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

LANDING GEAR HYDRAULIC SYSTEM SCHEMATIC Figure 7-7

REPORT: VB-890 7-8

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1987

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

FLIGHT CONTROL CONSOLE

Figure 7-9

7.11 FLIGHT CONTROLS

Dual flight controls are provided as standard equipment. A cable system provides actuation of the control surfaces when the flight controls are moved in their respective directions.

The horizontal surface (stabilator) is mounted atop the fin in a T configuration and features a trim tab/servo mounted on the trailing edge. This tab serves the dual function of providing trim control and pitch control forces. The trim function is controlled by a trim control wheel located on the control console between the two front seats (Figure 7-9). Rotating the wheel forward gives nose down trim and rotation aft gives nose up trim.

The rudder is conventional in design and incorporates a rudder trim. The trim mechanism is a springloaded recentering device. The trim control is located on the right side of the pedestal below the throttle quadrant. Turning the trim control clockwise gives nose right trim and counterclockwise rotation gives nose left trim.

Manually controlled flaps are provided. They are extended by a control cable and are spring-loaded to the retracted (up) position. The control is located between the two front seats on the control console. To extend the flaps pull the handle up to the desired flap setting of 10, 25, or 30 degrees. To retract, depress the button on the end of the handle and lower the control.

ISSUED: JANUARY 18, 1978 REVISED: FEBRUARY 21, 2005

When extending or retracting flaps, there is a pitch change in the aircraft. This pitch change can be corrected either by stabilator trim or increased control wheel force. When the flaps are in the retracted position the right flap, provided with an over-center lock mechanism, acts as a step.

NOTE

The right flap will support a load only in the fully retracted (up) position. When loading and unloading passengers make sure the flaps are in the retracted (up) position.

7.15 FUEL SYSTEM

The standard fuel capacity of the Lance II is 98 gallons, of which 94 gallons are usable, The tanks are attached to the wing structure with screws and nut plates and can be removed for service or inspection.

When using less than the standard 98 gallon capacity of the tank, fuel should be distributed equally between each side.

The fuel selector control is located below the center of the instrument panel on the sloping face of the control tunnel (refer to Figure 7-1). It has three positions, one position corresponding to each wing tank plus an OFF position.

To avoid the accumulation of water and sediment, the fuel tank sumps and strainer should be drained daily prior to first flight and after refueling. Each tank is equipped with an individual quick drain located at the lower inboard rear corner of the tank. The fuel strainer and a system quick drain valve are located in the fuselage at the lowest point of the fuel system. It is important that the fuel system be drained in the following manner:

- 1. Drain each tank sump through its individual quick drain located at the lower inboard rear corner of the tank, making sure that enough fuel has flowed to ensure the removal of all water and sediment.
- 2. Place a container beneath the fuel strainer sump drain outlet located under the fuselage.
- 3. Drain the fuel strainer sump by pressing down on the lever located on the right side of the cabin on the forward edge of the spar housing (Figure 7-13). Move the selector through the following sequence: OFF position, left, right, while draining the strainer sump. Make sure that enough fuel has flowed to drain the fuel line between each tank outlet and the fuel strainer, as well as the strainer itself. With full fuel tanks, it will take approximately 6 seconds to drain all of the fuel from the line from either tank to the fuel strainer. When the tanks are less than full, it will take a few seconds longer.
- 4. Examine the contents of the container placed under the fuel sump drain outlet. When the fuel flow is free of water and sediment, close the drain and dispose of the contents of the bottle.

CAUTION

When draining fuel, care should be taken to ensure that no fire hazard exists before staring the engine.

REPORT: VB-890 7-10 ISSUED: JANUARY 18, 1978 REVISED: APRIL 22, 1981

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

FUEL SYSTEM SCHEMATIC Figure 7-11

ISSUED: JANUARY 18, 1978

FUEL DRAIN LEVER Figure 7-13

After using the underseat quick drain, check from the outside to make sure that it has closed completely and is not leaking.

Fuel quantity gauges for each of the tanks are located in the engine gauge cluster on the left side of the instrument panel. A fuel pressure indicator is also incorporated in the engine gauge cluster on earlier models.

A fuel quantity indicator to measure the fuel not visible through the filler neck in each wing is installed in the inboard fuel tank. This gauge indicates usable fuel quantities from 5 gallons to 25 gallons in the ground attitude. The sole purpose of this gauge is to assist the pilot in determining fuel quantities of less than 25 gallons during the preflight inspection.

An electric fuel pump is provided for use in case of failure of the engine driven pump. The electric pump operates from a single switch and independent circuit protector. It should be ON for all takeoffs and landings.

REPORT: VB-890 7-12

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1979

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

SWITCH PANEL Figure 7-15

7.17 ELECTRICAL SYSTEM

The 14-volt electrical system includes a 12-volt battery for starting and to back up alternator output. Electrical power is supplied by a 60 ampere alternator. The battery, a master switch relay, a voltage regulator and an overvoltage relay are located beneath the floor of the forward baggage compartment. Access to these electrical components is gained by removing the compartment floor and the access panel located on the left side of the forward fuselage.

Electrical switches are located on a panel to the pilot's left (Figure 7-15) and all circuit breakers are on the lower right instrument panel (refer to Figure 7-19). A switch panel light is available as optional equipment. The light is installed above the switch panel and is controlled by a rheostat switch mounted on the left side of the panel. Two thumb-wheel rheostat switches to the left of the circuit breakers control the navigation lights and the intensity of the instrument panel lights.

Standard electrical accessories include the starter, the electric fuel pump, the stall warning indicator, the ammeter, and the annunciator panel.

The annunciator panel includes alternator and low oil pressure indicator lights. When the optional gyro system is installed, the annunciator panel also includes a low vacuum indicator light. The annunciator panel lights are provided only as a warning to the pilot that a system may not be operating properly, and that the applicable system gauge should be checked and monitored to determine when or if any corrective action is required.

ISSUED: JANUARY 18, 1978

ALTERNATOR AND STARTER SCHEMATIC

Figure 7-17

REPORT: VB-890 7-14

ISSUED: JANUARY 18, 1978

Optional electrical accessories include the navigation lights, anti-collision strobe lights, instrument panel lighting and cabin courtesy lights. The cabin courtesy light installation consists of two light/switch panels, one mounted above each cabin entrance. Make sure the lights are off when leaving the aircraft. Leaving the lights on for an extended period of time could cause depletion of the battery.

Circuit provisions are made to handle the addition of communications and navigational equipment.

The ammeter in the alternator system displays in amperes the load placed on the alternator. It does not indicate battery discharge. With all electrical equipment off (except the master switch) the ammeter will be indicating the amount of charging current demanded by the battery. As each item of electrical equipment is turned on, the current will increase to a total appearing on the ammeter. This total includes the battery. The naximum continuous load for night flight, with radios on, is about 30 amperes. This 30 ampere value, plus approximately 2 amperes for a fully charged battery, will appear continuously under these flight conditions.

The master switch is a split switch with the left half operating the master relay and the right half energizing the alternator. This switch is interlocked so that the alternator cannot be operated without the battery. For normal operation, be sure that both halves are turned on.

WARNING

When optional panel lights are installed, radio dimming switch must be off to obtain gear lights full intensity during daytime flying. When aircraft is operated at night and panel light radio dimming switch is turned on, gear lights will automatically dim.

WARNING

Strobe lights should not be operating when flying through overcast and clouds since reflected light can produce spacial disorientation. Do not operate strobe lights in close proximity to ground, during takeoff and landing.

ISSUED: JANUARY 18, 1978 REVISED: APRIL 22, 1981

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

CIRCUIT BREAKER PANEL Figure 7-19

REPORT: VB-890 . 7-16

.

ISSUED: JANAURY 18, 1978 REVISED: MARCH 27, 1978

7.19 VACUUM SYSTEM

The vacuum system is designed to operate the air driven gyro instruments. This includes the directional and attitude gyros when installed. The system consists of an engine driven vacuum pump, a vacuum regulator, a filter and the necessary plumbing.

The vacuum pump is a dry type pump which eliminates the need for an air/oil separator and its plumbing. A shear drive protects the pump from damage. If the drive shears the gyros will become inoperative.

The vacuum gauge, mounted on the right instrument panel to the right of the radios, (refer to Figure 7-21) provides valuable information to the pilot about the operation of the vacuum system. A decrease in pressure in a system that has remained constant over an extended period, may indicate a dirty filter, dirty screens, possibly a sticking vacuum regulator or leak in system (a low vacuum indicator light is provided in the annunciator panel). Zero pressure would indicate a sheared pump drive, defective pump, possibly a defective gauge or collapsed line. In the event of any gauge variation from the norm, the pilot should have a mechanic check the system to prevent possible damage to the system components or eventual failure of the system.

A vacuum regulator is provided in the system to protect the gyros. The value is set so the normal vacuum reads $5.0 \pm .1$ inches of mercury, a setting which provides sufficient vacuum to operate all the gyros at their rated RPM. Higher settings will damage the gyros and with a low setting the gyros will be unreliable. The regulator is located behind the instrument panel.

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

INSTRUMENT PANEL Figure 7-21

REPORT: VB-890 7-18

ISSUED: JANUARY 18, 1978 REVISED: JANUARY 31, 1987

7.21 INSTRUMENT PANEL

The instrument panel is designed to accommodate the customary advanced flight instruments and the normally required power plant instruments. The artificial horizon and directional gyro are vacuum operated and are located in the center of the left hand instrument panel. The vacuum gauge is located on the right hand instrument panel. The turn indicator, on the left side, is electrically operated.

The radios are located in the center section of the panel, and the circuit breakers are in the lower right corner of the panel.

An annunciator panel is mounted in the upper instrument panel to warn the pilot of a possible malfunction in the alternator, oil pressure, or vacuum systems.

7.23 PITOT-STATIC SYSTEM

The system supplies both pitot and static pressure for the airspeed indicator, altimeter and vertical speed indicator (when installed).

Pitot and static pressure are picked up by the pitot head on the bottom of the left wing. An optional heated pitot head, which alleviates problems with icing or heavy rain, is available. The switch for pitot heat is located on the switch panel to the pilot's left.

An alternate static source is available as optional equipment. The control valve is located below the left side of the instrument panel. When the valve is set in the alternate position, the altimeter, vertical speed indicator and airspeed indicator will be using cabin air for static pressure. The storm window and cabin vents must be closed and the cabin heater and defroster must be on during alternate static source operation. The altimeter error is less than 50 feet unless otherwise placarded.

To prevent bugs and water from entering the pitot and static pressure holes when the airplane is parked, a cover should be placed over the pitot head. A partially or completely blocked pitot head will give erratic or zero readings on the instruments.

NOTE

During preflight, check to make sure the pitot cover is removed.

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

PITOT-STATIC SYSTEM Figure 7-23

REPORT: VB-890 7-20

ISSUED: JANUARY 18, 1978

7.25 CABIN FEATURES

For ease of entry and exit and for pilot and passenger comfort, the front seats are adjustable fore and aft. All seats recline and have armrests and are available with optional headrests. The front seats can be equipped with optional vertical adjustment. The center and rear seats may be removed for additional cargo space.

NOTE

To remove the center seats, retainers securing the back legs of the seats must be unlocked. This is accomplished by depressing the plunger behind each rear leg. Any time the seats are installed in the airplane, the retainers should be in the locked position. To remove the rear seats, depress the plunger behind each front leg and slide seat to rear.

An optional jump seat can be installed between the two middle seats to give the airplane a seven-place capacity.

Single strap shoulder harnesses controlled by inertia reels are standard equipment for the front seats and are offered as optional equipment for the third, fourth, fifth and sixth seats, but not for the seventh seat. The shoulder strap is routed over the shoulder adjacent to the windows and attached to the lap belt in the general area of the person's inboard hip.

The inertia reel should be checked by tugging sharply on the strap. The reel will lock in place under this test and prevent the strap from extending. Under normal movement, the strap will extend and retract as required.

An optional club seating interior is also available. In the club seating interior the center seats face aft. These seats are equipped with lap belts only. Removal of the seats is accomplished by removing the two bolts holding the aft attach points and sliding the seat aft.

An optional refreshment console is located between the center seats. It is removed in an identical manner to the center seats.

An optional cabin work table, serving the two seats on the right side of the passenger cabin, is offered to the club seating arrangement. The table must be stowed during takeoff and landing. If the table is to be used, it should be set up after a level cruise is established.

To remove the cabin work table from the aft baggage compartment, unlock the stud located on the bottom of the close-out bulkhead. Loosen the white tie-down strap and remove the table from the mounting brackets by lifting the table two inches straight up until it clears the mounting brackets. Do not twist the table while it is in the brackets.

To install the cabin work table during flight, hold the table in place and tilt the free end of the table upward 30° until the lobed upper knobs on the table supports align with the top holes of the escutcheons located below the right cabin window trim. Hold the upper lobes in place and lower the free end of the table to the level work position. The retaining springs will click when secure.

To stow the cabin work table, remove the table by lifting the free end of the table upward to disengage the bottom lobes of the table supports. Lift until the top support lobes disengage at approximately 30° of tilt and remove the table. Position the table in the stowage area and, with the table

ISSUED: JANUARY 18, 1978 REVISED: SEPTEMBER 7, 1978

work surface facing forward, place the slots in the table support into the receptacle clips mounted on the hat shelf. Make sure the white tie-down strap is not behind the table. With the table fully placed in the clips, bring the white tie-down strap across the face of the table and lock over the stud located on the bottom of the close-out bulkhead.

7.27 BAGGAGE AREA

The airplane has two separate baggage areas, each with a 100 pound capacity. A 7 cubic foot forward luggage compartment, located just aft of the fire wall, is accessible through a 16 x 22 inch door on the right side of the fuselage. A17.3 cubic foot aft compartment is located behind the fifth and sixth seats and is accessible through the cargo door on the aft side of the fuselage and during flight from inside the cabin.

An automatic forward baggage light feature is available which utilizes a magnetic reed switch and a magnet for activation. The switch and magnet are mounted just above the hinge line of the forward baggage door.

Opening the baggage door fully causes activation of the switch which illuminates the baggage light. The baggage light is independent of the aircraft master switch; therefore, the light will illuminate regardless of the position of the master switch. The baggage door should not be left open for extended time periods, as battery depletion could result.

NOTE

It is the pilot's responsibility to be sure when the baggage is loaded that the airplane's C.G. falls within the allowable C.G. range. (Refer to Weight and Balance Section.)

7.29 HEATING AND VENTILATING SYSTEM

Fresh air is ducted from the front left engine baffle to the heater muff by a flexible hose. Hot air from the heater muff is routed through a flexible hose on the right side of the engine compartment, to the valve box mounted on the fire wall just above the tunnel cut out. It is then ducted down each side of the tunnel below the baggage floor to the cabin ducting and outlets (Figure 7-25).

Defrost heat is bled off from the main flow at the valve box and routed through flexible hose to a shut-off valve located to the right of center at the top of the fire wall. From this point, it is ducted to the defroster outlets.

Fresh air inlets are located in the leading edge of each wing at the intersection of the tapered and straight sections, and in the leading edge of the fin. Two adjustable outlets are located on each side of the cabin, one forward and one aft of the front seat near the floor. There are also adjustable outlets above each seat. In airplanes without air conditioning, an optional blower may be added to the overhead vent system to aid in the circulation of cabin air.

REPORT: VB-890 7-22

ISSUED: JANUARY 18, 1978 REVISED: SEPTEMBER 7, 1978

PIPER AIRCRAFT CORPORATION PA-32RT-300, LANCE II

HEATING AND VENTILATING SYSTEM Figure 7-25

ISSUED: JANUARY 18, 1978

7.31 STALL WARNING

An approaching stall is indicated by a stall warning horn which is activated between five and ten knots above stall speed. Mild to moderate airframe buffeting may also precede the stall. Stall speeds are shown on graphs in the Performance Section. The stall warning horn emits a continuous sound. The landing gear warning horn is different in that it emits a 90 cycle per minute beeping sound. The stall warning horn is activated by a lift detector installed on the leading edge of the left wing. During preflight, the stall warning system should be checked by turning the master switch "ON," lifting the detector and checking to determine if the horn is actuated.

7.33 FINISH

All exterior surfaces are primed with etching primer and finished with acrylic lacquer. An optional polyurethane enamel finish is available.

7.35 AIR CONDITIONING*

The air conditioning system is a recirculating air system. The major components include an evaporator, a condenser, a compressor, a blower, switches and temperature control.

The evaporator is located behind the rear baggage compartment. This cools the air used for the air conditioning system.

The condenser is mounted on a retractable scoop located on the bottom of the fuselage and to the rear of the baggage compartment area. The scoop extends when the air conditioner is ON and retracts to a flush position when the system is OFF.

The compressor is mounted on the forward right underside of the engine. It has an electric clutch which automatically engages or disengages the compressor to the belt drive system of the compressor.

Air from the baggage area is drawn through the evaporator by the blower and distributed through an overhead duct to individual outlets located adjacent to each occupant.

The switches and temperature control are located on the lower right side of the instrument panel in the climate control center panel. The temperature control regulates the temperature of the cabin. Turning the control clockwise increases cooling; counterclockwise decreases cooling.

The fan speed switch and the air conditioning ON-OFF switch are inboard of the temperature control. The fan can be operated independently of the air conditioning; however, the fan must be on for air conditioner operation. Turning either switch off will disengage the compressor clutch and retract the condenser door. Cooling air should be felt within one minute after the air conditioner is turned on.

NOTE

If the system is not operating in 5 minutes, turn the system OFF until the fault is corrected.

*Optional equipment

REPORT: VB-890 7-24

ISSUED: JANUARY 18, 1978 REVISED: JUNE 29, 1984 The fan switch allows operation of the fan with the air conditioner turned OFF to aid in cabin air circulation. "LOW" or "HIGH" can be selected to direct a flow of air through the air conditioner outlets in the overhead duct. These outlets can be adjusted or turned off individually

The condenser door light is located to the right of the engine instrument cluster in front of the pilot. The door light illuminates when the door is open and is off when the door is closed.

A circuit breaker on the circuit breaker panel protects the air conditioning electrical system.

Whenever the throttle is in the full forward position, it actuates a micro switch which disengages the compressor and retracts the scoop. This allows maximum power and maximum rate of climb. The fan continues to operate and the air will remain cool for about one minute. When the throttle is retarded approximately 1/4 inch, the clutch will engage, the scoop will extend, and the system will again supply cool, dry air.

7.37 PIPER EXTERNAL POWER*

An optional starting installation known as Piper External Power (PEP) is accessible through a receptacle located on the left side of the nose section aft of the cowling. An external battery can be connected to the socket, thus allowing the operator to crank the engine without having to gain access to the airplane's battery.

7.39 EMERGENCY LOCATOR TRANSMITTER*

The Emergency Locator Transmitter (ELT) when installed, is located in the aft portion of the fuselage just below the vertical stabilizer and is accessible through a plate on the right side of the fuselage. This plate is attached with slotted-head nylon screws for ease of removal; these screws may be readily removed with a variety of common items such as a dime, a key, a knife blade, etc. If there are no tools available in an emergency the screw heads may be broken off by any means. The ELT is an emergency locator transmitter which meets the requirements of FAR 91.52.

A battery replacement date is marked on the transmitter to comply with FAA regulations, the battery must be replaced on or before this date. The battery must also be replaced if the transmitter has been used in an emergency situation or if the accumulated test time exceeds one hour, or if the unit has been inadvertently activated for an undetermined time period.

NOTE

If for any reason a test transmission is necessary, the test transmission should be conducted only in the first five minutes of any hour and limited to three audio sweeps. If the tests must be made at any other time, the tests should be coordinated with the nearest FAA tower or flight service station.

NARCO ELT 10 OPERATION

On the ELT unit itself is a three position switch placarded "ON," "OFF" and "ARM." The ARM position sets the ELT so that it will transmit after impact and will continue to transmit until its battery is drained. The ARM position is selected when the ELT is installed in the airplane and it should remain in that position. *Optional equipment

ISSUED: JANUARY 18, 1978 REVISED: APRIL 22, 1981

To use the ELT as a portable unit in an emergency, remove the cover and unlatch the unit from its mounting base. The antenna cable is disconnected by a left quarter-turn of the knurled nut and a pull. A sharp tug on the two small wires will break them loose. Deploy the self-contained antenna by pulling the plastic tab marked "PULL FULLY TO EXTEND ANTENNA." Move the switch to ON to activate the transmitter.

In the event the transmitter is activated by an impact, it can only be turned off by moving the switch on the ELT unit to OFF. Normal operation can then be restored by pressing the small clear plastic reset button located on the top of the front face of the ELT and then moving the switch to ARM.

A pilot's remote switch located on the left side panel is provided to allow the transmitter to be turned on from inside the cabin. The pilot's remote switch is placarded "ON" and "ARMED." The switch is normally in the ARMED position. Moving the switch to ON will activate the transmitter. Moving the switch back to the ARMED position will turn off the transmitter only if the impact switch has not been activated.

The ELT should be checked to make certain the unit has not been activated during the ground check. Check by selecting 121.50 MHz on an operating receiver. If there is an oscillating chirping sound, the ELT may have been activated and should be turned off immediately. This requires removal of the access cover and moving the switch to OFF, then press the reset button and return the switch to ARM. Recheck with the receiver to ascertain the transmitter is silent.

CCC CIR 11-2 OPERATION

On the unit itself is a three position selector switch placarded "OFF," "ARM" and "ON." The ARM position is provided to set the unit to the automatic position so that it will transmit only after impact and will continue to transmit until the battery is drained to depletion or until the switch is manually moved to the OFF position. The ARM position is selected when the transmitter is installed at the factory and the switch should remain in that position whenever the unit is installed in the airplane. The ON position is provided so the unit can be used as a portable transmitter or in the event the automatic feature was not triggered by impact or to periodically test the function of the transmitter.

Select the OFF position when changing the battery, when rearming the unit if it has been activated for any reason, or to discontinue transmission.

NOTE

If the switch has been placed in the ON position for any reason, the OFF position has to be selected before selecting ARM. If ARM is selected directly from the ON position, the unit will continue to transmit in the ARM position.

A pilot's remote switch, located on the left side panel, is provided to allow the transmitter to be controlled from inside the cabin. The pilot's remote switch is placarded "ON," "AUTO/ARM" and "OFF/RESET." The switch is normally left in the AUTO/ARM position. To turn the transmitter off, move the switch momentarily to the OFF/RESET position. The aircraft master switch must be ON to turn the transmitter OFF. To actuate the transmitter for tests or other reasons, move the switch upward to the ON position and leave it in that position as long as transmission is desired.

The unit is equipped with a portable antenna to allow the locator to be removed from the aircraft in case of an emergency and used as a portable signal transmitter.

REPORT: VB-890 7-26

ISSUED: JANUARY 18, 1978 REVISED: APRIL 13, 1979 The locator should be checked during the ground check to make certain the unit has not been accidentally activated. Check by tuning a radio receiver to 121.50 MHz. If there is an oscillating sound, the locator may have been activated and should be turned off immediately. Reset to the ARM position and check again to insure against outside interference.

7.41 RADAR*

A weather radar system can be installed in this airplane. The basic components of this installation are an R-T Antenna and a cockpit indicator. The function of the weather radar system is to detect weather conditions along the flight path and to visually display a continuous weather outline on the cockpit indicator. Through interpretation of the advance warning given on the display, the pilot can make an early decision on the most desirable weather avoidance course.

NOTE

When operating weather avoidance radar systems inside of moderate to heavy precipitation, it is advisable to set the range scale of the radar to its lowest scale.

For detailed information on the weather radar system and for procedures to follow in operating and adjusting the system to its optimum efficiency, refer to the appropriate operating and service manuals provided by the radar system manufacturer.

WARNING

Heating and radiation effects of radar can cause serious damage to the eyes and tender organs of the body. Personnel should not be allowed within fifteen feet of the area being scanned by the antenna while the system is transmitting. Do not operate the radar during refueling or in the vicinity of trucks or containers accommodating explosives or flammables. Flashbulbs can be exploded by radar energy. Before operating the radar, direct the nose of the airplane so that the forward 120 degree sector is free of any metal objects such as other aircraft or hangars for a distance of at least 100 yards, and tilt the antenna upward 15 degrees. Do not operate the radar while the airplane is in a hangar or other enclosure.

*Optional equipment

ISSUED: DECEMBER 15, 1978 REVISED: APRIL 13, 1979