EMERGENCY PROCEDURES Emergencies caused by aircraft or engine malfunctions are extremely rare if proper pre-flight inspections and maintenance are practiced. Enroute weather emergencies can be minimized or eliminated by careful flight planning and good judgement when unexpected weather is encountered. However, should an emergency arise the basic guidelines described in this section should be considered and applied as necessary to correct the problem. ## ENGINE FAILURE. ## ENGINE FAILURE AFTER TAKE-OFF. Prompt lowering of the nose to maintain airspeed and establish a glide attitude is the first response to an engine failure after take-off. In most cases, the landing should be planned straight ahead with only small changes in direction to avoid obstructions. Altitude and airspeed are seldom sufficient to execute a 180° gliding turn necessary to return to the runway. The following procedures assume that adequate time exists to secure the fuel and ignition systems prior to touchdown. - (1) Airspeed -- 75 MPH (flaps UP). 70 MPH (flaps DOWN). - (2) Mixture -- IDLE CUT-OFF. - (3) Fuel Selector Valve -- OFF. - (4) Ignition Switch -- OFF. - (5) Wing Flaps -- AS REQUIRED (40° recommended). - (6) Master Switch -- OFF, #### ENGINE FAILURE DURING FLIGHT. While gliding toward a suitable landing area, an effort should be made to identify the cause of the failure. If time permits, and an engine restart is feasible, proceed as follows: - (1) Airspeed -- 80 MPH. - (2) Carburetor Heat -- ON. - (3) Fuel Selector Valve -- BOTH. - (4) Mixture -- RICH. - (5) Ignition Switch -- BOTH (or START if propeller is not windmilling) (6) Primer -- IN and LOCKED. If the engine cannot be restarted, a forced landing without power must be executed. A recommended procedure for this is given in the following paragraph. # FORCED LANDINGS. # EMERGENCY LANDING WITHOUT ENGINE POWER. If all attempts to restart the engine fail and a forced landing is imminent, select a suitable field and prepare for the landing as follows: - (1) Airspeed -- 75 MPH (flaps UP). 70 MPH (flaps DOWN). - (2) Mixture -- IDLE CUT-OFF. - (3) Fuel Selector Valve -- OFF. - (4) Ignition Switch -- OFF. - (5) Wing Flaps -- AS REQUIRED (40° recommended). - (6) Master Switch -- OFF. - (7) Doors -- UNLATCH PRIOR TO TOUCHDOWN. (8) Touchdown -- SLIGHTLY TAIL LOW. - (9) Brakes -- APPLY HEAVILY. # PRECAUTIONARY LANDING WITH ENGINE POWER. Before attempting an "off airport" landing, one should drag the landing area at a safe but low altitude to inspect the terrain for obstructions and surface conditions, proceeding as follows: - (1) Drag over selected field with flaps 20° and 70 MPH airspeed, noting the preferred area for touchdown for the next landing approach. Then retract flaps upon reaching a safe altitude and airspeed. - (2) Radio, Electrical Switches -- OFF. - (3) Wing Flaps -- 40° (on final approach). - (4) Airspeed -- 70 MPH. - (5) Master Switch -- OFF. - (6) Doors -- UNLATCH PRIOR TO TOUCHDOWN. (7) Touchdown -- SLIGHTLY TAIL LOW. - (8) Ignition Switch -- OFF. - (9) Brakes -- APPLY HEAVILY. #### DITCHING. Prepare for ditching by securing or jettisoning heavy objects located in the baggage area, and collect folded coats or cushions for protection of occupant's face at touchdown. Transmit Mayday message on 121.5 MHz. giving location and intentions. - (1) Plan approach into wind if winds are high and seas are heavy. With heavy swells and light wind, land parallel to swells. - (2) Approach with flaps 40° and sufficient power for a 300 ft. / min. rate of descent at 70 MPH - (3) Unlatch the cabin doors. - (4) Maintain a continuous descent until touchdown in level attitude. Avoid a landing flare because of difficulty in judging aircraft height over a water surface. - (5) Place folded coat or cushion in front of face at time of touchdown. - (6) Evacuate aircraft through cabin doors. If necessary, open window to flood cabin compartment for equalizing pressure so that door - (7) Inflate life vests and raft (if available) after evacuation of cabin. The aircraft cannot be depended on for flotation for more than a few minutes. #### FIRES. ## ENGINE FIRE DURING START ON GROUND. Improper starting procedures during a difficult cold weather start can cause a backfire which could ignite fuel that has accumulated in the intake duct. In this event, proceed as follows: - (1) Continue cranking in an attempt to get a start which would suck the flames and accumulated fuel through the carburetor and into the engine. - (2) If the start is successful, run the engine at 1700 RPM for a few minutes before shutting it down to inspect the damage. - (3) If engine start is unsuccessful, continue cranking for two or three minutes with throttle full open while ground attendants obtain fire extinguishers. - (4) When ready to extinguish fire, discontinue cranking and turn off master switch, ignition switch, and fuel selector valve. - (5) Smother flames with fire extinguisher, seat cushion, wool blanket. or loose dirt. If practical, try to remove carburetor air filter if it is - (6) Make a thorough inspection of fire damage, and repair or replace damaged components before conducting another flight. #### ENGINE FIRE IN FLIGHT. Although engine fires are extremely rare in flight, the following steps should be taken if one is encountered: - (1) Mixture -- IDLE CUT-OFF. - (2) Fuel Selector Valve -- OFF. - (3) Master Switch -- OFF. - (4) Cabin Heat and Air -- OFF (except overhead vents). - (5) Airspeed -- 120 MPH. If fire is not extinguished, increase glide speed to find an airspeed which will provide an incombustible mixture. Execute a forced landing as outlined in preceding paragraphs. #### ELECTRICAL FIRE IN FLIGHT. The initial indication of an electrical fire is usually the odor of burning insulation. The following procedure should then be used: - (1) Master Switch -- OFF. - (2) All Radio/Electrical Switches -- OFF.(3) Vents/Cabin Air/Heat -- CLOSED. - (4) Fire Extinguisher -- ACTIVATE (if available). If fire appears out and electrical power is necessary for continuance of flight: - (5) Master Switch -- ON. - (6) Circuit Breakers -- CHECK for faulty circuit, do not reset. - (7) Radio/Electrical Switches -- ON one at a time, with delay after each until short circuit is localized. (8) Vents/Cabin Air/Heat -- OPEN when it is ascertained that fire is completely extinguished. ## DISORIENTATION IN CLOUDS. In the event of a vacuum system failure during flight in marginal weather, the directional gyro and gyro horizon will be disabled, and the pilot will have to rely on the turn coordinator or the turn and bank indicator if he inadvertently flies into clouds. The following instructions assume that only the electrically-powered turn coordinator or the turn and bank indicator is operative, and that the pilot is not completely proficient in partial panel instrument flying. ## EXECUTING A 180° TURN IN CLOUDS. Upon entering the clouds, an immediate plan should be made to turn back as follows: - (1) Note the time of the minute hand and observe the position of the sweep second hand on the clock. - (2) When the sweep second hand indicates the nearest half-minute, initiate a standard rate left turn, holding the turn coordinator symbolic aircraft wing opposite the lower left index mark for 60 seconds. Then roll back to level flight by leveling the miniature aircraft. - (3) Check accuracy of the turn by observing the compass heading which should be the reciprocal of the original heading. - (4) If necessary, adjust heading primarily with skidding motions rather than rolling motions so that the compass will read more accurately. - (5) Maintain altitude and airspeed by cautious application of elevator control. Avoid overcontrolling by keeping the hands off the control wheel and steering only with rudder. # EMERGENCY LET-DOWNS THROUGH CLOUDS. If possible, obtain radio clearance for an emergency descent through clouds. To guard against a spiral dive, choose an easterly or westerly heading to minimize compass card swings due to changing bank angles. In addition, keep hands off the control wheel and steer a straight course with rudder control by monitoring the turn coordinator. Occasionally check the compass heading and make minor corrections to hold an approximate course. Before descending into the clouds, set up a stabilized let- #### down condition as follows: - (1) Apply full rich mixture. - (2) Use full carburetor heat. - (3) Reduce power to set up a 500 to 800 ft./min. rate of descent. - (4) Adjust the elevator trim tab for a stabilized descent at 80 to 90 MPH. - (5) Keep hands off the control wheel. - (6) Monitor turn coordinator and make corrections by rudder alone. - (7) Check trend of compass card movement and make cautious corrections with rudder to stop the turn. - (8) Upon breaking out of clouds, resume normal cruising flight. #### RECOVERY FROM A SPIRAL DIVE. If a spiral is encountered, proceed as follows: - (1) Close the throttle. - (2) Stop the turn by using coordinated aileron and rudder control to align the symbolic aircraft in the turn coordinator with the horizon reference line. - (3) Cautiously apply elevator back pressure to slowly reduce the indicated airspeed to 90 MPH. - (4) Adjust the elevator trim control to maintain a 90 MPH glide. - (5) Keep hands off the control wheel, using rudder control to hold a straight heading. - (6) Apply carburetor heat. - (7) Clear engine occasionally, but avoid using enough power to disturb the trimmed glide. - (8) Upon breaking out of clouds, apply normal cruising power and resume flight. # FLIGHT IN ICING CONDITIONS. Although flying in known icing conditions is prohibited, an unexpected icing encounter should be handled as follows: - (1) Turn pitot heat switch ON (if installed). - (2) Turn back or change altitude to obtain an outside air temperature that is less conducive to icing. - (3) Pull cabin heat control full out and open defroster outlet to obtain maximum windshield defroster airflow. Adjust cabin air control to get maximum defroster heat and airflow. (4) Open the throttle to increase engine speed and minimize ice build-up on propeller blades. - (5) Watch for signs of carburetor air filter ice and apply carburetor heat as required. An unexplained loss in engine speed could be caused by carburetor ice or air intake filter ice. Lean the mixture for maximum RPM if carburetor heat is used continuously. - (6) Plan a landing at the nearest airport. With an extremely rapid ice build-up, select a suitable 'off airport' landing site. - (7) With an ice accumulation of 1/4 inch or more on the wing leading edges, be prepared for significantly higher stall speed. - (8) Leave wing flaps retracted. With a severe ice build-up on the horizontal tail, the change in wing wake airflow direction caused by wing flap extension could result in a loss of elevator effectiveness. - (9) Open left window and, if practical, scrape ice from a portion of the windshield for visibility in the landing approach. - (10) Perform a landing approach using a forward slip, if necessary, for improved visibility. - (11) Approach at 75 to 85 MPH, depending upon the amount of ice accumulation. - (12) Perform a landing in level attitude. # ROUGH ENGINE OPERATION OR LOSS OF POWER. CARBURETOR ICING. A gradual loss of RPM and eventual engine roughness may result from the formation of carburetor ice. To clear the ice, apply full throttle and pull the carburetor heat knob full out until the engine runs smoothly; then remove carburetor heat and readjust the throttle. If conditions require the continued use of carburetor heat in cruise flight, use the minimum amount of heat necessary to prevent ice from forming and lean the mixture slightly for smoothest engine operation. ## SPARK PLUG FOULING. A slight engine roughness in flight may be caused by one or more spark plugs becoming fouled by carbon or lead deposits. This may be verified by turning the ignition switch momentarily from BOTH to either L or R position. An obvious power loss in single ignition operation is evidence of spark plug or magneto trouble. Assuming that spark plugs are the more likely cause, lean the mixture to the normal lean setting for cruising flight. If the problem does not clear up in several minutes, determine if a richer mixture setting will produce smoother operation. If not, proceed to the nearest airport for repairs using the BOTH position of the ignition switch unless extreme roughness dictates the use of a single ignition position. #### MAGNETO MALFUNCTION. A sudden engine roughness or misfiring is usually evidence of magneto problems. Switching from BOTH to either L or R ignition switch position will identify which magneto is malfunctioning. Select different power settings and enrichen the mixture to determine if continued operation on BOTH magnetos is practicable. If not, switch to the good magneto and proceed to the nearest airport for repairs. #### LOW OIL PRESSURE. If low oil pressure is accompanied by normal oil temperature, there is a possibility the oil pressure gage or relief valve is malfunctioning. A leak in the line to the gage is not necessarily cause for an immediate precautionary landing because an orifice in this line will prevent a sudden loss of oil from the engine sump. However, a landing at the nearest airport would be advisable to inspect the source of trouble. If a total loss of oil pressure is accompanied by a rise in oil temperature, there is good reason to suspect an engine failure is imminent. Reduce engine power immediately and select a suitable forced landing field. Leave the engine running at low power during the approach, using only the minimum power required to reach the desired touchdown spot. # ELECTRICAL POWER SUPPLY SYSTEM MALFUNCTIONS. Malfunctions in the electrical power supply system can be detected by periodic monitoring of the ammeter and over-voltage warning light; however, the cause of these malfunctions is usually difficult to determine. A broken alternator drive belt or wiring is most likely the cause of alternator failures, although other factors could cause the problem. A damaged or improperly adjusted voltage regulator can also cause malfunctions. Problems of this nature constitute an electrical emergency and should be dealt with immediately. Electrical power malfunctions usually fall into two categories: excessive rate of charge and insufficient rate of charge. The paragraphs below describe the recommended remedy for each situation. #### EXCESSIVE RATE OF CHARGE. After engine starting and heavy electrical usage at low engine speeds (such as extended taxiing) the battery condition will be low enough to accept above normal charging during the initial part of a flight. However. after thirty minutes of cruising flight, the ammeter should be indicating less than two needle widths of charging current. If the charging rate were to remain above this value on a long flight, the battery would overheat and evaporate the electrolyte at an excessive rate. Electronic components in the electrical system could be adversely affected by higher than normal voltage if a faulty voltage regulator setting is causing the overcharging. To preclude these possibilities, an over-voltage sensor will automatically shut down the alternator and the over-voltage warning light will illuminate if the charge voltage reaches approximately 16 volts. Assuming that the malfunction was only momentary, an attempt should be made to reactivate the alternator system. To do this, turn both sides of the master switch off and then on again. If the problem no longer exists, normal alternator charging will resume and the warning light will go off. If the light comes on again, a malfunction is confirmed. In this event, the flight should be terminated and/or the current drain on the battery minimized because the battery can supply the electrical system for only a limited period of time. If the emergency occurs at night, power must be conserved for later use of the landing light and flaps during landing. ## INSUFFICIENT RATE OF CHARGE. If the ammeter indicates a continuous discharge rate in flight, the alternator is not supplying power to the system and should be shut down since the alternator field circuit may be placing an unnecessary load on the system. All non-essential equipment should be turned off and the flight terminated as soon as practical. # EMERGENCY LOCATOR TRANSMITTER (ELT). The ELT consists of a self-contained dual-frequency radio transmitter and battery power supply, and is activated by an impact of 5g or more as may be experienced in a crash landing. The ELT emits an omni-directional signal on the international distress frequencies of 121.5 and 243.0 MHz. General aviation and commercial aircraft, the FAA, and CAP - 1. COVER Removable for access to battery. - 2. FUNCTION SELECTOR SWITCH (3-position toggle switch): - ON Activates transmitter instantly. Used for test purposes and if "g" switch is inoperative. - OFF Deactivates transmitter. Used during shipping, storage and following rescue. - ARM Activates transmitter only when "g" switch receives 5g or more impact. - 3. ANTENNA RECEPTACLE Connection to antenna mounted on top of the tailcone. Figure 3-1. monitor 121.5 MHz, and 243.0 MHz is monitored by the military. Following a crash landing, the ELT will provide line-of-sight transmission up to 100 miles at 10,000 feet. The duration of ELT transmissions is affected by ambient temperature. At temperatures of +70° to +130°F, continuous transmission for 115 hours can be expected; a temperature of -40°F will shorten the duration to 70 hours. The ELT is readily identified as a bright orange unit mounted behind a cover in the aft baggage compartment on the right side of the fuselage. To gain access to the unit, pull out on the black fasteners on the bottom of the cover and remove the cover. The ELT is operated by a control panel at the forward facing end of the unit. (see figure 3-1). #### ELT OPERATION. - (1) NORMAL OPERATION: As long as the function selector switch remains in the ARM position, the ELT automatically activates following an impact of 5 g or more over a short period of time. - (2) ELT FAILURE: If "g" switch actuation is questioned following a minor crash landing, gain access to the ELT and place the function selector switch in the ON position. - (3) PRIOR TO SIGHTING RESCUE AIRCRAFT: Conserve aircraft battery. Do not activate radio transceiver. - (4) AFTER SIGHTING RESCUE AIRCRAFT: Place ELT function selector switch in the OFF position, preventing radio interference. Attempt contact with rescue aircraft with the radio transceiver set to a frequency of 121.5 MHz. If no contact is established, return the function selector switch to ON immediately. - (5) FOLLOWING RESCUE: Place ELT function selector switch in the OFF position, terminating emergency transmissions. - (6) INADVERTENT ACTIVATION: Following a lightning strike or an exceptionally hard landing, the ELT may activate although no emergency exists. Select 121.5 MHz on your radio transceiver. If the ELT can be heard transmitting, place the function selector switch in the OFF position; then immediately return the switch to ARM. 3 - 11